A Census of Baryons in Galaxy Clusters and Groups
نویسندگان
چکیده
We determine the contribution of stars in galaxies, intracluster stars, and the intracluster medium to the total baryon budget in nearby galaxy clusters and groups. We find that the baryon mass fraction (fb ≡ Ωb/Ωm) within r500 is constant for systems with M 500 between 6 × 10 13 M⊙ and 1 × 10 M⊙. Although fb is lower than the WMAP value, the shortfall is on the order of both the observational systematic uncertainties and the depletion of baryons within r500 that is predicted by simulations. The data therefore provide no compelling evidence for undetected baryonic components, particularly any that would be expected to vary in importance with cluster mass. A unique feature of the current analysis is direct inclusion of the contribution of intracluster light (ICL) in the baryon budget. With the addition of the ICL to the stellar mass in galaxies, the increase in X-ray gas mass fraction with increasing total mass is entirely accounted for by a decrease in the total stellar mass fraction, supporting the argument that the behavior of both the stellar and X-ray gas components is dominated by a decrease in star formation efficiency in more massive environments. Within just the stellar component, the fraction of the total stellar luminosity in the central, giant brightest cluster galaxy (BCG) and ICL (hereafter the BCG+ICL component) decreases as velocity dispersion (σ) increases for systems with 145 km s ≤ σ ≤ 1026 km s, suggesting that the BCG+ICL component, and in particular the dominant ICL component, grows less efficiently in higher mass environments. The degree to which this behavior arises from our sample selection, which favored systems with central, giant elliptical galaxies, remains unclear. A more robust result is the identification of low mass groups with large BCG+ICL components, demonstrating that the creation of “intracluster” stars does not require a massive cluster environment. Within r500 and r200, the BCG+ICL contributes on average 40% and 33% of the total stellar light, respectively, for the clusters and groups in our sample. Because these fractions are functions of both enclosed radius and system mass, care should be exercised when comparing these values with other studies and simulations. Subject headings: galaxies: clusters: general — galaxies:cD, formation, evolution, fundamental parameters
منابع مشابه
اندازهگیری نمایه عمق نوری خوشههای کهکشانی با استفاده از اثرسونیائف زلدوویچ جنبشی
baryonic matter distribution in the large-scale structures is one of the main questions in cosmology. This distribution can provide valuable information regarding the processes of galaxy formation and evolution. On the other hand, the missing baryon problem is still under debate. One of the most important cosmological structures for studying the rate and the distribution of the baryons is gal...
متن کاملIron as a Tracer in Galaxy Clusters and Groups
Available X-ray data are collected and organized concerning the iron and gas content of galaxy clusters and groups, together with the optical luminosity, mass and iron abundance of cluster galaxies. Moving from such a restricted number of cluster parameters several astrophysical inferences are drawn. These include the evidence for rich clusters having evolved without much baryon exchange with t...
متن کاملar X iv : a st ro - p h / 03 08 47 5 v 1 2 7 A ug 2 00 3 Signatures of Galaxy Formation in the Intracluster Medium
The intergalactic gas in groups and clusters of galaxies bears the indelible stamp of galaxy formation. We present a comparison between observations and simple theoretical models indicating that radiative cooling governs the entropy scale that sets the core radius of the intracluster medium. Entropy measured at the radius 0.1r200 scales as T , in accord with cooling-threshold models for the reg...
متن کاملThe baryon content of the Universe
We estimate the baryon mass density of the Universe due to the stars in galaxies and the hot gas in clusters and groups of galaxies. The galaxy contribution is computed by using the Efstathiou, Ellis & Peterson luminosity function, together with van der Marel and Persic & Salucci’s mass-to-light versus luminosity relationships. We find Ω b ≃ 0.002. For clusters and groups we use the Edge et al....
متن کاملDynamical limits on galactic winds, halo machos and intergalactic globular clusters
We argue that any violent galactic winds following early epoch of star bursts would significantly weaken the potentials of galaxies, and leave lasting signatures such as a lowered dark halo density and preferentially radial/escaping orbits for halo tracers such as globular clusters. A galaxy is disintegrated if more than half of its dynamical mass is blown off. The presence of dense halos in ga...
متن کامل